Class: Butane
Description
The Butane class represents the properties and constants for Butane (C₄H₁₀).
It provides physical and thermodynamic properties required in process engineering simulations and calculations.
Properties
name(string): Butaneformula(string): C₄H₁₀molecular_weight(float): 58.12 g/mol
Class Reference
class Butane()
Parameters:
temperature: Temperature, default = Temperature(25,"C")
pressure: Pressure, default = Pressure(1,"atm")
density: Density, default = None
specific_heat: SpecificHeat, default = None
viscosity: Viscosity, default = None
thermal_conductivity: ThermalConductivity, default = None
vapor_pressure: Pressure, default = None
enthalpy: HeatOfVaporization, default = None
Methods
The properties of the Butane class are calculated using the following methods, which are inherited from the base Component class.
phase(): Detects the phase of the substance ("gas"or"liquid") by comparing the system pressure to the calculated vapor pressure.density():- Gas Phase: Calculates density using the Ideal Gas Law
- Liquid Phase: Calculates density using the DIPPR correlation
specific_heat(): Calculates specific heat capacity (Cp) as a polynomial function of temperatureviscosity():- Liquid Phase: Calculates viscosity (μ) using DIPPR correlation
- Gas Phase: Uses Sutherland’s Law
thermal_conductivity(): Calculates thermal conductivity (k) as a polynomial function of temperaturevapor_pressure(): Calculates vapor pressure (Pvap) using an Antoine-type correlationenthalpy(): Calculates the enthalpy of vaporization (ΔHvap) using a correlation based on reduced temperature
Examples
from processpi.components import Butane
from processpi.units import *
c4 = Butane(temperature=Temperature(25, "C"))
print(c4.density().to("kg/m3"))
print(c4.viscosity().to("Pa·s"))
print(c4.specific_heat().to("J/kgK"))
print(c4.thermal_conductivity().to("W/mK"))
print(c4.vapor_pressure().to("Pa"))
print(c4.enthalpy().to("J/kg"))