Skip to content

Class: Butane

Description

The Butane class represents the properties and constants for Butane (C₄H₁₀).
It provides physical and thermodynamic properties required in process engineering simulations and calculations.

Properties

  • name (string): Butane
  • formula (string): C₄H₁₀
  • molecular_weight (float): 58.12 g/mol

Class Reference

class Butane()

Parameters:
temperature: Temperature, default = Temperature(25,"C")
pressure: Pressure, default = Pressure(1,"atm")
density: Density, default = None
specific_heat: SpecificHeat, default = None
viscosity: Viscosity, default = None
thermal_conductivity: ThermalConductivity, default = None
vapor_pressure: Pressure, default = None
enthalpy: HeatOfVaporization, default = None

Methods

The properties of the Butane class are calculated using the following methods, which are inherited from the base Component class.

  • phase(): Detects the phase of the substance ("gas" or "liquid") by comparing the system pressure to the calculated vapor pressure.
  • density():
    • Gas Phase: Calculates density using the Ideal Gas Law
    • Liquid Phase: Calculates density using the DIPPR correlation
  • specific_heat(): Calculates specific heat capacity (Cp​) as a polynomial function of temperature
  • viscosity():
    • Liquid Phase: Calculates viscosity (μ) using DIPPR correlation
    • Gas Phase: Uses Sutherland’s Law
  • thermal_conductivity(): Calculates thermal conductivity (k) as a polynomial function of temperature
  • vapor_pressure(): Calculates vapor pressure (Pvap​) using an Antoine-type correlation
  • enthalpy(): Calculates the enthalpy of vaporization (ΔHvap​) using a correlation based on reduced temperature

Examples

from processpi.components import Butane
from processpi.units import *

c4 = Butane(temperature=Temperature(25, "C"))
print(c4.density().to("kg/m3"))
print(c4.viscosity().to("Pa·s"))
print(c4.specific_heat().to("J/kgK"))
print(c4.thermal_conductivity().to("W/mK"))
print(c4.vapor_pressure().to("Pa"))
print(c4.enthalpy().to("J/kg"))